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5.1 Coalitions and Characteristic Functions 

Problems
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• We consider a game in which the players may choose to 

cooperate by forming coalitions.

– There are n > 1 players numbered 1, 2,…, n.

– The set of all the players: N={1,2,..., n}  

– A coalition is any subset              , or numbered collection of the players.

Coalitions and Characteristic Functions

– A coalition is any subset              , or numbered collection of the players.

– Since there are 2n possible subsets of N, there are 2n possible 

coalitions. 

• Coalitions form in order to benefit every member of the 

coalition so that all members might receive more than they 

could individually on their own.
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• In this section we try to determine a fair allocation of the 

benefits of cooperation among the players to each member of 

a coalition. 

– A major problem in cooperative game theory is to precisely define 

what fair means. 

Coalitions and Characteristic Functions

• First we need to quantify the benefits of a coalition through 

the use of a real-valued function, called the characteristic 

function.

– The characteristic function of a coalition is the largest 

guaranteed payoff to the coalition. 
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• Definition 5.1.1 

– Let 2N denote the set of all possible coalitions for the players N. If S = {i}

is a coalition containing the single member i, we simply denote S by i.

Any function                    satisfying

Definition 5.1.1

is a characteristic function (of an n-person cooperative game).
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• In other words, the only condition placed on a characteristic 

function is that the benefit of the empty coalition be zero and 

the benefit of the grand coalition N, consisting of all the 

players, be at least the sum of the benefits of the individual 

players if no coalitions form. 

Definition 5.1.1 (cont’d)

players if no coalitions form. 

– This means that every one pulling together should do better than each 

player on his or her own. 

– With that much flexibility, games may have more than one 

characteristic function. 
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• Let's start with some simple characteristic function examples.

EXAMPLE 5.1
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EXAMPLE 5.1 (cont’d)
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EXAMPLE 5.1 (cont’d)
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EXAMPLE 5.1 (cont’d)
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EXAMPLE 5.1 (cont’d)
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• In this example we will construct a characteristic function for 

a version of the prisoner's dilemma game in which we 

assumed that there was no cooperation. Now we will assume 

that the players may cooperate and negotiate. 

EXAMPLE 5.2

• Prisoner's dilemma bimatrix

– Here N = {1, 2} and the possible coalitions are 2N =                  .
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– If the players do not form a coalition, they are playing the nonzero 

sum noncooperative game. Each player can guarantee only that they 

receive their safety level.

For player I

EXAMPLE 5.2 (cont’d)

For player II

– Thus we could define v(l) = v(2) = 2 as the characteristic function for 

single member coalitions. 
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• If the players cooperate and form the coalition S = {12} , the 

Figure 5.1, which is generated by Maple, shows what is going 

on. 

– The parallelogram is the boundary of the set of all possible payoffs to 

the two players when they use all possible mixed strategies. 

EXAMPLE 5.2 (cont’d)

– You can see that without cooperation the profits are each at the lower 

left vertex point (2, 2). 

– Any point in the parallelogram is attainable with some suitable 

selection of mixed strategies if the players cooperate. Consequently, 

the maximum benefit to cooperation for both players results in the 

payoff pair at vertex point (8,8), and so we set v(12) = 16 as the 

maximum sum of the benefits awarded to each player. 
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EXAMPLE 5.2 (cont’d)

(8, 8) is Pareto-optimal
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The Pareto-optimal boundary 

of the payoff set 



• Here is a much more complicated but systematic way to 

create a characteristic function given any n-person, 

noncooperative, nonzero sum game. 

– The idea is to create a two-person zero sum game in which any given 

coalition is played against a pure opposing coalition consisting of 

everybody else. The two players are the coalition S versus all the other 

EXAMPLE 5.3

everybody else. The two players are the coalition S versus all the other 

players, which is also a coalition N - S.

– The characteristic function will be the value of the game associated 

with each coalition S.
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• Suppose that we have a three-player nonzero sum game with 

the following matrices: 

EXAMPLE 5.3 (cont’d)
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• We need to consider all of the zero sum games which would 

consist of the two-player coalitions versus each player, and 

the converse, which will switch the roles from maximizer to 

minimizer and vice versa. 

– For example, one such possible game is S = {12} versus N — S = 3, in 

EXAMPLE 5.3 (cont’d)

– For example, one such possible game is S = {12} versus N — S = 3, in 

which player S = {12} is the row player and player 3 is the column 

player. We also have to consider the game 3 versus {12}, in which 

player 3 is the row player and coalition {12} is the column player. 
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• 1. Play S = {12} versus {3}. 
– players 1 and 2 team up against player 3. 

– In the game {12} versus {3}

EXAMPLE 5.3 (cont’d)

• For example, if 1 plays A and 2 plays A and 3 plays B, the payoffs in the nonzero sum 

game are (-3,1, 2) and so the payoff to player 12 is -3 + 1 = -2, the sum of the 

payoff to player 1 and player 2, which is our coalition. 
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• Now we calculate the value of the zero sum two-person game with this matrix to 

get the value(12 vs. 3) = 3 and we write v(12) = 3. 

– In the game {3} versus {12} 

EXAMPLE 5.3 (cont’d)

• We now want to know the maximum possible payoff to player 3 assuming that the 

coalition {12} is actively working against player 3. 

• The value of this game is -1. Consequently, in the game {3} versus {12} we would get 

v(3) = - 1. 

• Observe that the game matrix for 3 versus 12 is not the transpose of the game 

matrix for 12 versus 3.
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• 2. Play S = {13} versus {2}. 

– In the game {13} versus {2}

EXAMPLE 5.3 (cont’d)

• We see that the value of this game is 1 so that v(13) = 1. 
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– In the game {2} versus {13}

EXAMPLE 5.3 (cont’d)

• The value of this game is 1/4, and so v(2) = 1/4.

• we summarize that the characteristic function for this three-

person game is
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• The value is obtained from the pure strategies: 3 plays A, 1 

plays A, and 2 plays B with payoffs (4, -2,2). Summing these 

payoffs for all the players gives v(123) = 4. 

– This is the most the players can get if they form a grand coalition, and 

they can get this only if all the players cooperate. 

EXAMPLE 5.3 (cont’d)
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• The central question in cooperative game theory is how to 

allocate the reward of 4 to the three players. In this example, 

player 2 contributes a payoff of -2 to the grand coalition, so 

should player 2 get an equal share of the 4? On the other 

hand, the 4 can only be obtained if player 2 agrees to play 

EXAMPLE 5.3 (cont’d)

hand, the 4 can only be obtained if player 2 agrees to play 

strategy B, so player 2 does have to be induced to do this. 

What would be a fair allocation?
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Remark. 

– There is a general formula for the characteristic function obtained by 

converting an n-person nonzero sum game to a cooperative game. 

Given any coalition             , the characteristic function is 

The General Formula for The  Characteristic 

Function

• is the set of mixed strategies for the coalition S

• is the set of mixed strategies for the coalition N - S

• is the expected payoff to player

• is the total payoff for each player in               and represents the 

payoff to the coalition S.
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• 1. A very desirable property of a characteristic function is 

that it satisfy

This is called superadditivity. 

– It says that the benefits of the larger consolidated coalition S U T of 

Remarks on Characteristic Functions

– It says that the benefits of the larger consolidated coalition S U T of 

the two separate coalitions S. T must be at least the total benefits of 

the individual coalitions S and T.

– Many results on cooperative games do not need superadditivity, but 

we will take it as an axiom that our characteristic functions in all that 

follows must be superadditive. 

– With the assumption of superadditivity, the players have the incentive 

to form and join the grand coalition N.
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• 2. A game is inessential if and only if . An

essential game therefore is one with       .

• 3. Any game with                                     for 

all    , is called an additive game. A game is 

Remarks on Characteristic Functions (cont’d)

all    , is called an additive game. A game is 

inessential if and only if it is additive. 

– The word inessential implies that these games are not important. 
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• To see why a characteristic function for an inessential game 

must be additive, we simply write down the definitions. In fact 

let                              . 

– Then 

Remarks on Characteristic Functions (cont’d)

– Since we now have equality throughout
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• We need a basic definition regarding the allocation of rewards 

to each player. Recall that v(N) represents the reward 

available if all players cooperate.

• Definition 5.1.2

Definition 5.1.2

• Definition 5.1.2
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• Remarks

1. It is possible for to be a negative number! That allows us to model 

coalition members that do not benefit and may be a detriment to a 

coalition.

2. Individual rationality means that the share received by player i

should be at least what he could get on his own. Each player must be 

Definition 5.1.2 (cont’d)

should be at least what he could get on his own. Each player must be 

individually rational.

3. Group rationality means that the total rewards allocated to each 

individual in the grand coalition should equal the total rewards 

available by cooperation.

Chih-Wen Chang @ NCKU Game Theory, Ch5 31



4. Any inessential game,                                , has one and only one 

imputation and it is                                    .

These games are uninteresting because there is no incentive for any 

of the players to form any sort of coalition and there is no wiggle 

room in finding a better allocation.

Definition 5.1.2 (cont’d)
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• We begin by presenting a way to transform a given 

characteristic function for a cooperative game to one which is 

frequently easier to work with. It is called the (0,1) 

normalization of the original game.

– The normalized game will result in a characteristic function with v(i) = 

(0,1) Normalization

– The normalized game will result in a characteristic function with v(i) = 

0, v(N) = 1. 

– In addition, any two games may be compared by comparing their 

normalized characteristic functions. If they are the same, the two 

games are said to be strategically equivalent.
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• Lemma 5.1.3

Lemma 5.1.3
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Lemma 5.1.3 (cont’d)
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• If we have an imputation for an unnormalized game, what 

does it become for the normalized game? Conversely, if we 

have an imputation for the normalized game, how do we get 

the imputation for the original game? 

– The set of imputations for the original game is

How Does Normalizing Affect Imputations?

– The set of imputations for the original game is

– For the normalized game, indeed, for any game with v(i) = 0, v(N) = 1, 

the set of all possible imputations is given by
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– If is an imputation for v' then the 

imputation for v becomes

How Does Normalizing Affect Imputations? (cont’d)

– Conversely, if                     is an imputation for the original 

game, then     is the imputation for the normalized 

game, where                                                     .
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EXAMPLE 5.4
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EXAMPLE 5.4 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 39



• Let X denote the set of imputations     . We look for an 

allocation    as a solution to the game.

• Definition 5.1.4

Definition 5.1.4

Chih-Wen Chang @ NCKU Game Theory, Ch5 40



– In other words, the reasonable set is the set of imputations so that the 

amount allocated to each player is no greater than the maximum 

benefit that the player brings to any coalition of which the player is a 

member

– The difference v(T) - v(T - i) is the measure of the rewards for coalition 

T due to player i.

Definition 5.1.4 (cont’d)

T due to player i.

– The reasonable set gives us a first way to reduce the size of X and try 

to focus in on a solution.

• If the reasonable set has only one element, which is 

extremely unlikely for most games, then that is our solution.   
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• If there are many elements in R, we need to cut it down 

further. In fact, we need to cut it down to the core 

imputations, or even further. Here is the definition.

• Definition 5.1.5

Definition 5.1.5

• Definition 5.1.5
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Definition 5.1.5 (cont’d)

– The grand coalition is excluded in the requirements for     because if 

N were an eligible coalition, then      , and it would force 

to be nonnegative. That would put too strict a requirement on in 

order for   to be nonempty.
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– We will use the notation that for a given imputation                           and 

a given coalition 

the total amount allocated to coalition S.

Definition 5.1.5 (cont’d)
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• Remark

1. The excess function is a measure of dissatisfaction

of a particular coalition with the allocation . Consequently, is in 

the core if all coalitions are satisfied with . If the core has only one 

allocation, that is our solution.

• If                      , this would say that the maximum possible benefits of joining the 

Definition 5.1.5 (cont’d)

• If                      , this would say that the maximum possible benefits of joining the 

coalition are greater than the total allocation to the members of using the 

imputation . But then the members of would not be very happy with and 

would want to change to a better allocation.

• In that sense, if                    , then for every coalition  , and there 

would be no incentive for any coalition to try to use a different imputation. An 

imputation is in the core of a game if it is acceptable to all coalitions.
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2. Likewise, if                , then the measure of dissatisfaction of a 

coalition with is limited to . The size of £ determines the measure 

of dissatisfaction because                     .

3. It is possible for the core of the game           to be empty, but there 

will always be some so that   . The least core 

Definition 5.1.5 (cont’d)

will always be some so that   . The least core 

uses the smallest such . If the smallest .

4. It should be clear, since   is just a set of inequalities, that as 

increases, gets bigger, and as decreases,   gets smaller.

• The idea is that we should shrink (or expand if necessary) by adjusting until 

we get one and only one imputation in it, if possible.

• .
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5. We will see shortly that                    every allocation in the core is 

always in the reasonable set.

6. The definition of solution for a cooperative game we are going to use 

in this section is that an imputation should be a fair allocation if it is 

the allocation which minimizes the maximum dissatisfaction for all 

Definition 5.1.5 (cont’d)

the allocation which minimizes the maximum dissatisfaction for all 

coalitions.
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EXAMPLE 5.5 
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EXAMPLE 5.5 (cont’d)
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EXAMPLE 5.5 (cont’d)
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• Lemma 5.1.6

The core must be a subset of the reasonable set                .

Lemma 5.1.6
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• In this example we will normalize the given characteristic 

function, find the reasonable set, and find the core of the 

game. Finally, we will find the least core and then find the 

unnormalized imputation.

–

EXAMPLE 5.6

–

–
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• The set of imputations is

– The reasonable set is easy to find:

EXAMPLE 5.6 (cont’d)

–
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–

EXAMPLE 5.6 (cont’d)

–

Chih-Wen Chang @ NCKU Game Theory, Ch5 54



–

EXAMPLE 5.6 (cont’d)
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– Figure 5.2 was generated with the simple Maple commands

EXAMPLE 5.6 (cont’d)
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• We would like to find next the point (or points) in the 

reasonable set which is acceptable to all coalitions.   

– That is the core of the game:

EXAMPLE 5.6 (cont’d)
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–

EXAMPLE 5.6 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 58



–

EXAMPLE 5.6 (cont’d)
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–

EXAMPLE 5.6 (cont’d)

–
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• We have already argued that the core C(0) should consist of 

the good imputations and so would be considered the 

solution of our game. 

– If in fact C(0) contained exactly one point, then that would be true. 

Unfortunately, the core may contain many points, as in the last 

example, or may even be empty. 

EXAMPLE 5.7

example, or may even be empty. 

• Here is an example of a game with an empty core.
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EXAMPLE 5.7 (cont’d)
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EXAMPLE 5.7 (cont’d)
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• In this example we will determine a necessary and sufficient 

condition for any cooperative game with three players to have 

a nonempty core.

– .

EXAMPLE 5.8
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EXAMPLE 5.8 (cont’d)
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EXAMPLE 5.8 (cont’d)
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• Remark: An Automated Way to Determine Whether C(0) = 0.

– Maple can give us a simple way of determining whether the core is 

empty. Consider the linear program:

EXAMPLE 5.8 (cont’d)

It is not hard to check that           is not empty if and only if the linear 

program has a minimum, say, , and    . If the game is 

normalized, then we need . When this condition is not 

satisfied,   .              . 
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– For instance, in the last example the commands would be

Maple gives the output        as the allocation and 

EXAMPLE 5.8 (cont’d)

Maple gives the output        as the allocation and 

a           as the sum of the allocation components. Since this is a game 

in which the allocation components must sum to 1, because 

, we see that the core must be empty.
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5.1.1 Finding the Least Core Problems
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• One way to describe the fact that one imputation is better 

than another is the concept of domination.

• Definition 5.1.8 

Definition 5.1.8

– If dominates for the coalition , then members of prefer the 

allocation to the allocation , because they get more              , for 

each , and the coalition S can actually achieve the allocation 

because
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• Theorem 5.1.9

Theorem 5.1.9
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Theorem 5.1.9 (cont’d)
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Theorem 5.1.9 (cont’d)
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• Suppose that Bill has 150 sinks to give away to the whomever 

shows up to take them away. 

– Amy(l), Agnes(2), and Agatha(3) simultaneously show up with their 

trucks to take as many of the sinks as their trucks can haul. 

– Amy can haul 45, Agnes 60, and Agatha 75, for a total of 180, 30 more 

than the maximum of 150. 

EXAMPLE 5.9

than the maximum of 150. 

• The wrinkle in this problem is that the sinks are too heavy for 

any one person to load onto the trucks so they must 

cooperate in loading the sinks. The question is: How many 

sinks should be allocated to each person?

Chih-Wen Chang @ NCKU Game Theory, Ch5 74



–

– The set of imputations will be

EXAMPLE 5.9 (cont’d)

– Let's use Maple to see if the core is nonempty:
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–

EXAMPLE 5.9 (cont’d)

–
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–

EXAMPLE 5.9 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 77



• Lemma 5.1.10

Lemma 5.1.10
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Lemma 5.1.10 (cont’d)
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Lemma 5.1.10 (cont’d)
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Lemma 5.1.10 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 81



Maple Calculation of the Least Core
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• The Maple commands used to solve this are very simple:

Maple Calculation of the Least Core (cont’d)

• Maple produces the output
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• With Maple we can graph the core and the set              with the following 

commands:

Maple Calculation of the Least Core (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 84



Maple Calculation of the Least Core (cont’d)
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• You can even see how the core shrinks to the c-core using an animation: 

Maple Calculation of the Least Core (cont’d)
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Maple Calculation of the Least Core (cont’d)
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5.2 The Nucleolus Problems
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• The core          might be empty, but we can find an so that    .   

.      is not empty. We can fix the empty problem. Even if         is 

not empty, it may contain more than one point and again we 

can use to maybe shrink the core down to one point or, if  

.             , to expand the core until we get it nonempty. The 

THE NUCLEOLUS

.             , to expand the core until we get it nonempty. The 

problem is what happens when the least core itself has 

too many points.

• In the previous section we saw that we should shrink         to 

.       , SO if has more than one allocation, why not shrink 

that also? No reason at all.
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–

EXAMPLE 5.10
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–

EXAMPLE 5.10

–
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EXAMPLE 5.10 (cont’d)
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– So we have the problem that the least core does not have only one 

imputation that we would be able to call our solution. What is the fair 

allocation now? We must shrink the line down somehow. 

–

EXAMPLE 5.10 (cont’d)

–
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–

EXAMPLE 5.10 (cont’d)
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–

–

EXAMPLE 5.10 (cont’d)
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–

EXAMPLE 5.10 (cont’d)

• The set X2 is the subset of allocations from X1 that are preferred by the coalitions in  

.   .
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–

EXAMPLE 5.10 (cont’d)

–
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–

EXAMPLE 5.10 (cont’d)
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– X2 consists of exactly one point. That is our solution to the problem. 

Notice that for this allocation

EXAMPLE 5.10 (cont’d)

and each of these is a constant smaller than        .
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• The most difficult part of this procedure is finding      ,      , and so on. This 

is where Maple is a great help. For instance, we can find   very 

easily if we use the commands

Maple informs us that z=-1/4, x1=11/20, x2=7/20.

EXAMPLE 5.10 (cont’d)

Maple informs us that z=-1/4, x1=11/20, x2=7/20.
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EXAMPLE 5.10 (cont’d)
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EXAMPLE 5.10 (cont’d)
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• Theorem 5.2.1

Theorem 5.2.1
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• The nucleolus algorithm stops when all coalitions have been 

eliminated, but when working this out by hand you don't have 

to go that far. When you see that Xk is a single point you may 

stop.

– The procedure to find the nucleolus can be formulated as a sequence 

Theorem 5.2.1 (cont’d)

– The procedure to find the nucleolus can be formulated as a sequence 

of linear programs that can be solved using Maple.

• .
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• .

Theorem 5.2.1 (cont’d)
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•

Theorem 5.2.1 (cont’d)
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• Three hospitals, A,B,C, want to have a proton therapy 

accelerator (PTA) to provide precise radiological cancer 

therapy. These are very expensive devices because they are 

subatomic particle accelarators. The hospitals can choose to 

build their own or build one, centrally located, PTA to which 

EXAMPLE 5.11

build their own or build one, centrally located, PTA to which 

they may refer their patients.
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• The costs for building their own PTA are estimated at 50, 30, 

50, for A,B,C, respectively. The units for these numbers are 

million-dollars. If A and B cooperate to build a PTA, the total 

cost will be 60 because of land costs for the location, 

coordination, and so on. If B and C cooperate, the cost will be 

EXAMPLE 5.11 (cont’d)

coordination, and so on. If B and C cooperate, the cost will be 

70; if A and C cooperate, the cost will be 110. Because the 

cost for cooperation between A and C is greater than what it 

would cost if they built their own, they would decide to build 

their own, so the cost is still 100 for AC cooperation. Finally, 

the cost to build one PTA for all three hospitals A,B,C is 105.
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– We reformulate the problem by looking at the amount saved by each 

player and for each coalition. 

– The characteristic function is then

EXAMPLE 5.11 (cont’d)
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–

EXAMPLE 5.11 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 110



–

EXAMPLE 5.11 (cont’d)
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–

EXAMPLE 5.11 (cont’d)
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–

EXAMPLE 5.11 (cont’d)

–
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–

EXAMPLE 5.11 (cont’d)
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EXAMPLE 5.12
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• In this example we will give the Maple commands at each stage to 

find the nucleolus. This entire procedure can be automated but that 

is a programming problem.

• We take the characteristic function

EXAMPLE 5.12 (cont’d)

• We take the characteristic function

and this is in normalized form. We see that                      , and 

so the core of the game C(0) is not empty by Proposition 

5.1.7. We need to find the allocation within the core which 

solves our problem.

Chih-Wen Chang @ NCKU Game Theory, Ch5 116



• 1. First linear programming problem. We start with the full set of 

possible coalitions excluding the grand coalition N 

and    :                         .                                  . In addition, with the given 

characteristic function, we get the excesses

EXAMPLE 5.12 (cont’d)

• The Maple commands that give the solution are
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• Maple gives the solution     .So 

this gives the allocation .

– But this is not necessarily the unique allo-cation and therefore the solution to 

our game.

– To see if there are more allocations in , substitute  as well as 

.                       in the constraint set.

EXAMPLE 5.12 (cont’d)

.                       in the constraint set.

• To do that in Maple use the substitute command

– This will put the new constraint set into the variable f cnsts and gives us the 

output
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• To get rid of the first equality so that we can continue, use

• This puts the second through seventh elements of f cnsts into 

gcnsts. Now, to see if there are other solutions, we need to solve 

EXAMPLE 5.12 (cont’d)

gcnsts. Now, to see if there are other solutions, we need to solve 

the system of inequalities in gcnsts for . Maple does that as 

follows:
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• Maple solves the system of inequalities in the sense that it reduces 

the inequal-ities to simplest form and gives the following output:

– We see that                                                                  .

EXAMPLE 5.12 (cont’d)
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• 2. To get the second linear program we first have to see which 

coalitions are dropped. First we assign the variables that are known 

from the first linear program and recalculate the constraints:

EXAMPLE 5.12 (cont’d)

• Maple gives the output:
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• Getting rid of the coalitions that have excess= — y^ (indicated by 

the output without any x variables), we have the new constraint set

EXAMPLE 5.12 (cont’d)

• Now we solve the second linear program

– which gives
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• At each stage we need to determine whether there is more than 

one solution of the linear programming problem. To do that, we 

have to substitute our solution for z2 into the constraints and solve 

the inequalities:

EXAMPLE 5.12 (cont’d)

• We get

and we know now that because                       

. 
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–

EXAMPLE 5.13
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–

EXAMPLE 5.13 (cont’d)
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–

EXAMPLE 5.13 (cont’d)
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EXAMPLE 5.13 (cont’d)
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• This is clearly a nonempty set with many points, so we need to find 

the nucleolus. This is the complete set of Maple commands needed 

to do this:

EXAMPLE 5.13 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 128



EXAMPLE 5.13 (cont’d)
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EXAMPLE 5.13 (cont’d)
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• When we get to the last execution group, we have already 

determined that                               , and the last constraint set 

gives

which tells us that and                             .We have found 

EXAMPLE 5.13 (cont’d)

which tells us that and                             .We have found 

that the nucleolus consists of the single allocation
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5.3 The Shapley Value Problems
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• We change the definition of fair from minimizing the 

maximum dissatisfaction to allocating an amount 

proportional to the benefit each coalition derives from 

having a specific player as a member.

– The question is how do we figure out how much benefit each player 

The Shapley Value

– The question is how do we figure out how much benefit each player 

adds to a coalition. Lloyd Shapley came up with a way. 
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• Definition 5.3.1

Definition 5.3.1

– To see where this definition comes from, fix a player, say, i, and 

consider the random variable Zi, which takes its values in the set of all 

possible coalitions 2N.

– Zi is the coalition S in which i is the last player to join S and n - |S|

players join the grand coalition after player i. 
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– Diagrammatically, if i joins the coalition S on the way to the formation 

of the grand coalition, we have

Definition 5.3.1 (cont’d)

• For a given coalition S , by elementary probability, there are 

(|S| — l)!(n - |S|)! ways i can join the grand coalition N, 

joining S first. With this reasoning, we assume that Zi has the 

probability distribution
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– The denominator is the total number of ways that the grand coalition 

can form among n players. Any of the n! permutations has probability       

of actually being the way the players join. 

• This distribution assumes that they are all equally likely.

– Therefore, for the fixed player i, the benefit player i brings to the 

coalition Zi is v(Zi) — v(Zi — i). It seems reasonable that the amount of 

Definition 5.3.1 (cont’d)

coalition Zi is v(Zi) — v(Zi — i). It seems reasonable that the amount of 

the total grand coalition benefits that should be allocated to player i 

should be the expected value of v(Zi) — v(Zi — i). This gives,

The Shapley value (or vector) is then the allocation                              . 
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–

EXAMPLE 5.14

–
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–

EXAMPLE 5.14 (cont’d)
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– Let's go back to the sink allocation (Example 5.9) with Amy, Agnes, and 

Agatha. Using the core concept, we obtained

EXAMPLE 5.15

– The characteristic function was
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–

EXAMPLE 5.15
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–

EXAMPLE 5.15 (cont’d)
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–

EXAMPLE 5.15 (cont’d)
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EXAMPLE 5.16
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EXAMPLE 5.16 (cont’d)
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EXAMPLE 5.16 (cont’d)
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EXAMPLE 5.16 (cont’d)
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EXAMPLE 5.17

Chih-Wen Chang @ NCKU Game Theory, Ch5 147



EXAMPLE 5.17 (cont’d)
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EXAMPLE 5.17 (cont’d)
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• Shapley vectors can also quickly analyze the winning coalitions 

in games where winning or losing is all we care about: who do 

we team up with to win. Here are the definitions.

• Definition 5.3.2

Definition 5.3.2

• Definition 5.3.2
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• Simple games are very important in voting systems. 

– For example, a game in which the coalition with a majority of 

members wins has v(S) = 1, if |S| > n/2, as the winning coalitions. 

Losing coalitions have |S| < n/2 and v(S) = 0. If only unanimous votes 

win, then v(N) = 1 is the only winning coalition. Finally, if there is a 

certain player who has dictatorial power, say, player 1, then v(S) = 1 if 

Definition 5.3.2 (cont’d)

certain player who has dictatorial power, say, player 1, then v(S) = 1 if 

1    S and v(S) = 0 if 1 S.

• In the case of a simple game for player i we need only 

consider coalitions            for which S is a winning coalition, 

but S - i, that is, S without i, is a losing coalition. 
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• We have denoted that set by Wl. We need only consider S

because v(S) - v(S - i) = 1 only when v(S) = 1, and v(S - i) = 0. In 

all other cases v(S) - v(S - i) = 0 . Hence, the Shapley value for a 

simple game is

Definition 5.3.2 (cont’d)

• The Shapley allocation for player i represents the power that 

player i holds in a game. It is also called the Shapley-Shubik 

index.
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EXAMPLE 5.18
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EXAMPLE 5.18 (cont’d)
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EXAMPLE 5.18 (cont’d)
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EXAMPLE 5.19
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EXAMPLE 5.19 (cont’d)
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EXAMPLE 5.20
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EXAMPLE 5.20 (cont’d)
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EXAMPLE 5.20 (cont’d)
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EXAMPLE 5.20 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 161



EXAMPLE 5.20 (cont’d)
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EXAMPLE 5.20 (cont’d)
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EXAMPLE 5.20 (cont’d)
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EXAMPLE 5.20 (cont’d)
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EXAMPLE 5.20 (cont’d)
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• A player i is a dummy if for any coalition S in which           , we 

have

So dummy player i contributes nothing to any coalition. The 

players who are not dummies are called the carriers of the 

Dummy and  Carriers

players who are not dummies are called the carriers of the 

game. Let's define C = set of carriers.
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• Given a characteristic function v, we should get an allocation 

as a function of v,                                           , where will be 

the allocation or worth or value of player i in the game, and 

this function should satisfy the following properties:

Dummy and  Carriers (cont’d)
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– It essentially says that the allocation to a player using the sum of 

characteristic functions should be the sum of the allocations 

corresponding to each characteristic function. 

• There is one and only one function that satisfies them! It is 

given by         , where

Dummy and  Carriers (cont’d)

given by         , where

This is the only function satisfying the properties, and, sure 

enough, it is the Shapley value. 
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5.4 Bargaining
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• In this section we will introduce a new type of cooperative 

game in which the players bargain to improve both of their 

payoffs. Let us start with a simple example to illustrate the 

benefits of bargaining and cooperation. 

Bargaining

• Consider the prisoner's dilemma two-player nonzero sum 

game with bimatrix
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• You can easily check that there are three Nash equilibria given 

by                                                                                     .Now 

consider Figure 5.8.

Bargaining (cont’d)
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– The points represent the possible pairs of pay offs to each 

player .  given by

– It was generated with the following Maple commands:

Bargaining (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 173



– The horizontal axis (abscissa) is the payoff to player I, and the vertical 

axis (ordinate) is the payoff to player II. Any point in the parabolic 

region is achievable for a some 0 < x < 1,0 < y < 1.

– The parabola is given by the implicit equation                                                          

• If the players play pure strategies, the payoff to each player will be at one of the 

Bargaining (cont’d)

• If the players play pure strategies, the payoff to each player will be at one of the 

vertices. The pure Nash equilibria yield the payoff pairs                      .          

.

• The mixed Nash point gives the payoff pair , which is strictly 

inside the region of points, called the noncooperative payoff set.
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• Now, if the players do not cooperate, they will achieve one of 

two possibilities: 

1. The vertices of the figure, if they play pure strategies.

2. Any point in the region of points bounded by the two lines and the 

parabola, if they play mixed strategies.

Bargaining (cont’d)

– The portion of the triangle outside the parabolic region is not 

achievable simply by the players using mixed strategies. However, if 

the players agree to cooperate, then any point on the boundary of 

the triangle, the entire shaded region, including the boundary of the 

region, are achievable payoffs.
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– Player I wants a payoff as large as possible and thus as far to the right 

on the triangle as possible. Player II wants to go as high on the triangle 

as possible. So player I wants to get the payoff at (2,1), and player II 

wants the payoff at (1,2), but this is possible if and only if the opposing 

player agrees to play the correct strategy. In addition, it seems that 

nobody wants to play the mixed Nash equilibrium because they can 

Bargaining (cont’d)

nobody wants to play the mixed Nash equilibrium because they can 

both do better, but they have to cooperate to achieve a higher payoff.
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– We will draw the pure payoff points of the game as the vertices of the 

graph and connect the pure payoffs with straight lines, as in Figure 5.9.

– The vertices of the polygon are the payoffs from the matrix. The solid 

EXAMPLE 5.21

– The vertices of the polygon are the payoffs from the matrix. The solid 

lines connect the pure payoffs. 

– The dotted lines extend the region of payoffs to those payoffs that 

could be achieved if both players cooperate.
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– Suppose that player I always chooses row 2,    , and player II plays the 

mixed strategy                             , where .

– The expected payoff  to I is  

– The expected payoff to II is

EXAMPLE 5.21

–

• which, as a linear combination of the three points (0,-2), (3,1), and (1,1), is in the 

convex hull of these three points.
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EXAMPLE 5.21 (cont’d)
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– This means that if players I and II can agree that player I will always 

play row 2, then player II can choose a                                at the payoff 

pair to each player will be in the triangle bounded by the lower dotted 

line in Figure 5.9 and the lines connecting (0,-2) with (1,1) with (3,1). 

– The conclusion is that any point in the convex hull of all the payoff 

points is achievable if the players agree to cooperate.

EXAMPLE 5.21 (cont’d)

points is achievable if the players agree to cooperate.
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• The entire triangle in Figure 5.9 is called the feasible set for 

the problem. The precise definition in general is as follows.

• Definition 5.4.1

Definition 5.4.1

– The objective of player I in Example 5.21 is to obtain a payoff as far to 

the right as possible in Figure 5.9, and the objective of player II is to 

obtain a payoff as far up as possible in Figure 5.9. Player I’s ideal payoff 

is at the point (3,1), but that is attainable only if II agrees to play II2. 
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– Why would he do that? Similarly, II would do best at (1,4), which will 

happen only if I plays I1, and why would she do that? There is an 

incentive for the players to reach a compromise agreement in which 

they would agree to play in such a way so as to obtain a payoff along 

the line connecting (1,4) and (3,1).

– That portion of the boundary is known as the Pareto-optimal 

Definition 5.4.1 (cont’d)

– That portion of the boundary is known as the Pareto-optimal 

boundary because it is the edge of the set and has the property that if 

either player tries to do better (say, player I tries to move further right), 

then the other player will do worse (player II must move down to 

remain feasible).
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• Definition 5.4.2

– The point of this discussion is that there is an incentive for the players 

Definition 5.4.2

– The point of this discussion is that there is an incentive for the players 

to cooperate and try to reach an agreement that will benefit both 

players. The result will always be a payoff pair occuring on the Pareto-

optimal boundary of the feasible set.
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• In any bargaining problem there is always the possibility that 

negotiations will fail. Hence, each player must know what the 

payoff would be if there were no bargaining. This leads us to 

the next definition.

Definition 5.4.3

• Definition 5.4.3

– Recall that the safety levels we used in previous sections were defined 

by the pair (value(A), value(BT)).
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– In the context of bargaining it is simply a noncooperative payoff to 

each player if no cooperation takes place. 

• For most problems considered in this section, the status quo point will be taken to 

be the values of the zero sum games associated with each player, because those 

values can be guaranteed to be achievable, no matter what the other player does.

Definition 5.4.3 (cont’d)
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– We will determine the security point for each player in Example 5.21, 

and take it to be the value of the zero sum games for each player

– Consider the payoff matrix for player I:

EXAMPLE 5.22

The optimal strategies for player II:

The optimal strategies for player I : 
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– Next we consider the payoff matrix for player II

For this matrix , and we have a saddle point at row 1 column 

2.

EXAMPLE 5.22 (cont’d)

2.

– We conclude that the status quo point for this game is since that 

is the guaranteed payoff to each player without cooperation or 

nego-tiation. This means that any bargaining must begin with the 

guaranteed payoff pair           . 
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EXAMPLE 5.22 (cont’d)
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– This cuts off the feasible set as in Figure 5.10. The new feasible of the 

points in Figure 5.10 above and to the right of the lines emanating 

from the security point            .

– Notice that in this problem the Pareto-optimal boundary is the line 

connect-ing (1,4) and (3,1) because no player can get a bigger payoff 

on this line without forcing the other player to get a smaller payoff.

EXAMPLE 5.22 (cont’d)

on this line without forcing the other player to get a smaller payoff.

• The question now is to find the cooperative, negotiated best 

payoff for each player. How does cooperation help?

– I will play row      half the time and row      half the time as long as II 

plays column       half the time and column       half the time.
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– If they agree to play this way, they will get                                         .

– So player I gets              and player II gets           , a big improvement for 

each player over his or her own individual safety level. So, they 

definitely have an incentive to cooperate.

EXAMPLE 5.22 (cont’d)
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– The bimatrix is

the safety level is given by the point

EXAMPLE 5.23

the optimal strategies

Negotiations start from the safety point.
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– Figure 5.11 shows the safety point and the associated feasible payoff 

pairs above and to the right of the dark lines. The shaded region in 

Figure 5.11 is the convex hull of the pure payoffs, namely, the feasible 

set, and is the set of all possible negotiated payoffs. 

– The region of dot points is the set of noncooperative payoff pairs if we 

consider the use of all possible mixed strategies.

EXAMPLE 5.23 (cont’d)

consider the use of all possible mixed strategies.

– A negotiated set of payoffs will benefit both players and will be on the 

line farthest to the right, which is the Pareto-optimal boundary.
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– Player I would love to get (17, 2), while player II would love to get 

(2,17). That probably won't occur but they could negotiate a point 

along the line connecting these two points and compromise on 

obtaining, say, the midpoint

EXAMPLE 5.23 (cont’d)

– So they could negotiate to get 9.5 each if they agree that each player 

would use the pure strategies X = (1,0) = Y half the time and play pure 

strategies X = (0,1) = Y exactly half the time. They have an incentive to 

cooperate.
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EXAMPLE 5.23 (cont’d)
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5.4.1 The Nash Model with Security Point
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• We start with any old security status quo point               for a 

two-player cooperative game with matrices A, B. This leads to 

a feasible set of possible negotiated outcomes depending on 

the point we start from               . This may be the safety 

point     .                                             , or not. For any given such 

The Nash Model with Security Point

point     .                                             , or not. For any given such 

point and feasible set S, we are looking for a negotiated 

outcome, call it           . This point will depend on               and 

the set S, so we may write
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• The question is how to determine the point           ? John Nash 

proposed the following requirements for the point to be a 

negotiated solution:

The Nash Model with Security Point (cont’d)
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The Nash Model with Security Point (cont’d)

• The amazing thing that Nash proved is that if we assume 

these axioms, there is one and only one solution of the 

bargaining problem.
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• Theorem 5.4.4

Theorem 5.4.4
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Theorem 5.4.4 (cont’d)
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Theorem 5.4.4 (cont’d)
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Theorem 5.4.4 (cont’d)
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– In an earlier example we considered the game with bimatrix

The safety levels

EXAMPLE 5.24

– Figure 5.12 for this problem shows the safety point and the associated 

feasible payoff pairs above and to the right.

– We need the equation of the lines forming the Pareto-optimal 

boundary.

In this example it is simply  , which is the line with negative 

slope to the right of the safety point. It is the only place where both 

players cannot simultaneously improve their payoffs. 
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EXAMPLE 5.24 (cont’d)
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– To find the bargaining solution for this problem, we have to solve the 

nonlinear programming problem

EXAMPLE 5.24 (cont’d)

– The Maple commands used to solve this are

This gives the optimal bargained payoff pair 

. The maximum of is 

, which we do not really use or need.
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– The bargained payoff to player I is and the bargained payoff 

to player II is . We do not get the point we expected, namely, 

(9.5,9.5); that is due to the fact that the security point is not 

symmetric. Player II has a small advantage.

– You can see in the Maple generated Figure 5.13 that the solution of 

the problem occurs just where the level curves, or contours of g are 

EXAMPLE 5.24 (cont’d)

the problem occurs just where the level curves, or contours of g are 

tangent to the boundary of the feasible set. Since the function g has 

concave up contours and the feasible set is convex, this must occur at 

exactly one point.
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EXAMPLE 5.24 (cont’d)
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– The Maple commands used to get Figure 5.13 are as follows.

EXAMPLE 5.24 (cont’d)
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– Finally, knowing that the optimal point must occur on the Pareto-

optimal bound-ary means we could solve the nonlinear programming 

problem by calculus. We want to maximize

EXAMPLE 5.24 (cont’d)

This is an elementary calculus maximization problem.

Chih-Wen Chang @ NCKU Game Theory, Ch5 209



– We will work through another example from scratch. We start with the 

follow-ing bimatrix:

–

EXAMPLE 5.25
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–

EXAMPLE 5.25 (cont’d)

–
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–

EXAMPLE 5.25 (cont’d)
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EXAMPLE 5.25 (cont’d)
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– Suppose that two persons are given $1000, which they can split if they 

can agree on how to split it. If they cannot agree they each get 

nothing.

– One player is rich, so her payoff function is

EXAMPLE 5.26

because the receipt of more money will not mean that much.

– The other player is poor, so his utility function is

because small amounts of money mean a lot but the money has less 

and less impact as he gets more but no more than $ 1000. 

Chih-Wen Chang @ NCKU Game Theory, Ch5 214



– We want to find the bargained solution. The safety points are taken as 

(0,0) because that is what they get if they can't agree on a split.

– The feasible set is

EXAMPLE 5.26
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EXAMPLE 5.26 (cont’d)
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– The solution is obtained using Maple as follows.

EXAMPLE 5.26 (cont’d)

– Maple tells us that the maximum is achieved at x = 836.91, y = 163.09, 

so the poor man gets $163 while the rich woman gets $837. Figure 

5.15 shows the feasible set as well as several level curves of f(x, y) = k. 

– The optimal solution is obtained by increasing k until the curve is 

tangent to the Pareto-optimal boundary. 

• That occurs here at the point (836.91,163.09). The actual value of the maximum is 

of no interest to us.
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5.4.2 Threats Problems

Chih-Wen Chang @ NCKU Game Theory, Ch5 218



• Negotiations of the type considered in the previous section do 

not take into account the relative strength of the positions of 

the players in the negotiations. 

• As mentioned earlier, a player may be able to force the 

Threats

• As mentioned earlier, a player may be able to force the 

opposing player to play a certain strategy by threatening to 

use a strategy that will be very detrimental for the opponent. 

These types of threats will change the bargaining solution.
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– We will consider the two-person game with bimatrix

– Player I’s and II’s payoff matrix are

EXAMPLE 5.27

–

so the security point is
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–

EXAMPLE 5.27 (cont’d)

In the usual way we get the solution                                    .

– This is achieved by players I and II agreeing to play the pure strategies      

.          31.2% of the time and pure strategies             68.8% of the time.

– Figure 5.16 below is a three-dimensional diagram of the contours of 

g(u, v) over the shaded feasible set. The dot shown on the Pareto 

boundary is the solution to our problem.
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EXAMPLE 5.27 (cont’d)
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• In a threat game we replace the security levels              , which 

we have so far taken to be the value of the associated 

games                                                      , with the expected 

payoffs to each player if threat strategies are used.

Finding the Threat Strategies

• Suppose that in the bimatrix game player I has a threat 

strategy   and player II has a threat strategy    . The new 

status quo or security point will be the expected payoffs to 

the players if they both use their threat strategies:
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• Then we return to the cooperative bargaining game and apply 

the same procedure as before but with the new threat 

security point; that is, we seek to 

Finding the Threat Strategies (cont’d)
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• In the Example 5.27 

– Let's suppose that the threat strategies are                     and

– Then the expected payoffs give us the safety point  

Finding the Threat Strategies (cont’d)

– Changing to this security point increases the size of the feasible set 

and changes the objective function to                                              . 

– When we solved this example with the security point                       we 

obtained the payoffs 7.501 for player I, and 1.937 for player II. The 

solution of the threat problem is                   .

• This reflects the fact that player II has a credible threat and therefore 

should get more than if we ignore the threat.  
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Finding the Threat Strategies (cont’d)
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• The question now is how to pick the threat strategies? How 

do we know in the previous example that the threat strategies 

we chose were the best ones? We continue our example to 

see how to solve this problem. 

– We look for a different security point associated with threats that we 

Finding the Threat Strategies (cont’d)

– We look for a different security point associated with threats that we 

call the optimal threat security point.
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• The Pareto-optimal boundary for our problem is the line 

segmen with slope . 

– Consider now a line with slope through any possible threat 

security point in the feasible set      .

– Referring to Figure 5.18, the line will intersect the Pareto-optimal 

boundary line segment at some possible negotiated solution . 

Finding the Threat Strategies (cont’d)

boundary line segment at some possible negotiated solution . 

– The line with slope   through                , whatever the point is, has 

the equation                                           
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Finding the Threat Strategies (cont’d)
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– The equation of the Pareto-optimal boundary line is

so the intersection point of the two lines will be at the coordinates

Finding the Threat Strategies (cont’d)

Now, remember that we are trying to find the best threat strategies to 

use, but the primary objective of the players is to maximize their 

payoffs          .
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– Player I will maximize if she chooses threat strategies to maximize 

the quantity                                                 .

– Player II will maximize   if he chooses threat strategies to minimize 

the same quantity because the Pareto-optimal boundary 

will have , so the sign of the term multiplying will be 

opposite in  and .

Finding the Threat Strategies (cont’d)

opposite in  and .
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• Here is the general procedure for finding  , and the 

optimal threat strategies as well as the solution of the 

bargaining game:

Summary Approach for Bargaining with Threat 

Strategies
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Summary Approach for Bargaining with Threat 

Strategies (cont’d)
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–

EXAMPLE 5.27, continued

There is a saddle point at the second row and first column, optimal 

threat strategies .

– Once we know that, we can use the formulas above to get
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– This matches with our previous solution in which we simply took the 

threat security point to be (-8, -2). Now we see that (-8, -2) is indeed 

the optimal threat security point.

EXAMPLE 5.27, continued (cont’d)
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• Consider the cooperative game with bimatrix

– The individual matrices are

EXAMPLE 5.28

– The individual matrices are

–

– The security point for this game is at
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– The problem we then need to solve is

EXAMPLE 5.28 (cont’d)

– The solution of this problem is at the unique point                         , 

which you can see in the Figure 5.20.

Chih-Wen Chang @ NCKU Game Theory, Ch5 237



EXAMPLE 5.28 (cont’d)
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• Figure 5.20 was created with the following Maple commands

EXAMPLE 5.28 (cont’d)
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• The solution of the problem is given by the Maple commands:

– We get from these commands that z = 0.083, x = u = 0.5, y = v = 1.167. 

EXAMPLE 5.28 (cont’d)

Chih-Wen Chang @ NCKU Game Theory, Ch5 240



– Next, to find the threat strategies we note that we have two 

possibilities because we have two line segments in Figure 5.20 as the 

Pareto-optimal boundary. 

–

EXAMPLE 5.28 (cont’d)

• Let’s use

– We look for the value of the game with matrix                :

–

– The optimal threat strategies are
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– Then the security threat points are

This means that each player threatens to use  and receive 0 

rather than cooperate and receive more.

– Now the maximization problem becomes

EXAMPLE 5.28 (cont’d)

– Now the maximization problem becomes
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– The solution of this problem is at the unique point                         . You 

can see in Figure 5.21 how the level curves have bent over to touch at 

the vertex.

EXAMPLE 5.28 (cont’d)
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EXAMPLE 5.28 (cont’d)
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• Let's look at

– The matrix is

–

EXAMPLE 5.28 (cont’d)

–

– The security threat points are

This point is exactly the vertex of the feasible set.
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– Now the maximization problem becomes

EXAMPLE 5.28 (cont’d)

– But this set has exactly one point, and it is (1,1), so we immediately 

get the solution                         .
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• What happens if we try to use the formulas (5.4.1) for the 

threat problem? 

– This question arises now because the contours of g are hitting the 

feasible set right at the point of intersection of two lines. 

– The two lines have the equations

EXAMPLE 5.28 (cont’d)

– Let's calculate for both
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–

EXAMPLE 5.28 (cont’d)
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–

EXAMPLE 5.28 (cont’d)
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• At the risk of undermining your confidence, this example will 

show that the Nash bargaining solution can be totally 

unrealistic, and in an important problem. 

– Suppose that there is a person, Moe, who has owes money to two 

creditors, Larry and Curly. He owes more than he can pay. Let's say 

that he can pay at most $100 but he owes a total of $150 > $100 

EXAMPLE 5.29

that he can pay at most $100 but he owes a total of $150 > $100 

dollars, $90 to Curly and $60 to Larry. The question is how to divide 

the $100 among the two creditors. We set this up as a bargaining 

game and use Nash's method to solve it.
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– First, the feasible set is

where u is the amount Larry gets, and v is the amount Curly will get.

– The objective function we want to maximize at first is 

because if Larry and Curly can't agree on the split, then we assume 

that they each get nothing.

EXAMPLE 5.29 (cont’d)

that they each get nothing.

– For the solution, we want to maximize  subject                               

. It is straightforward to show that the maximum occurs at 

.                  , as shown in Figure 5.22.
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– In fact, if we take any safety point of the form                      . we would 

get the exact same solution. This says that even though Moe owes 

Curly $90 and Larry $60, they both get the same amount as a 

settlement. That doesn't seem reasonable, and I'm sure Curly would 

be very upset.

– Now let's modify the safety point to       , which is 

EXAMPLE 5.29 (cont’d)

– Now let's modify the safety point to       , which is 

still feasible and reflects the fact that the players actually lose the 

amount owed in the worst case, that is, when they are left holding the 

bag. 
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– This case is illustrated in Figure 5.23. The solution is now obtained 

from maximizing   subject to 

.                                                 , and results in . 

• This is ridiculous because it says that Larry should be paid off in full while Curly, 

who is owed more, gets less than half of what he is owed.

EXAMPLE 5.29 (cont’d)
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EXAMPLE 5.29 (cont’d)
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